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Butts DA, Cui Y, Casti AR. Nonlinear computations shaping tem-
poral processing of precortical vision. J Neurophysiol 116: 1344–1357,
2016. First published June 22, 2016; doi:10.1152/jn.00878.2015.—Com-
putations performed by the visual pathway are constructed by neural
circuits distributed over multiple stages of processing, and thus it
is challenging to determine how different stages contribute on the
basis of recordings from single areas. In the current article, we
address this problem in the lateral geniculate nucleus (LGN), using
experiments combined with nonlinear modeling capable of isolating
various circuit contributions. We recorded cat LGN neurons presented
with temporally modulated spots of various sizes, which drove tem-
porally precise LGN responses. We utilized simultaneously recorded
S-potentials, corresponding to the primary retinal ganglion cell (RGC)
input to each LGN cell, to distinguish the computations underlying
temporal precision in the retina from those in the LGN. Nonlinear
models with excitatory and delayed suppressive terms were sufficient
to explain temporal precision in the LGN, and we found that models
of the S-potentials were nearly identical, although with a lower
threshold. To determine whether additional influences shaped the
response at the level of the LGN, we extended this model to use the
S-potential input in combination with stimulus-driven terms to predict
the LGN response. We found that the S-potential input “explained
away” the major excitatory and delayed suppressive terms responsible
for temporal patterning of LGN spike trains but revealed additional
contributions, largely PULL suppression, to the LGN response. Using
this novel combination of recordings and modeling, we were thus able
to dissect multiple circuit contributions to LGN temporal responses
across retina and LGN, and set the foundation for targeted study of
each stage.
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NEW & NOTEWORTHY

This work describes how nonlinear processing of the visual
stimulus evolves across successive stages of neural pro-
cessing: the retina and lateral geniculate nucleus (LGN),
using paired recordings of LGN neurons and their primary
retinal input. Nonlinear modeling is used to demonstrate
that temporal patterning of LGN spikes is largely estab-
lished in the retina and amplified in the LGN by temporal
integration and thresholding. We also detected smaller
inputs added at the level of the LGN.

THE FUNCTION OF MOST SENSORY neurons is commonly de-
scribed using the concept of a receptive field (Spillmann
2014). The simple intuition underlying receptive field func-
tion is that the response of the neuron is proportional to how
closely the stimulus resembles the receptive field, both in space

and in time. This description is particularly useful for modeling
neurons at early stages of visual processing, including retinal
ganglion cells (RGCs) and relay cells in the lateral geniculate
nucleus (LGN), where quantitative models based on linear
receptive fields have been quite successful (Carandini et al.
2005; Shapley 2009). Furthermore, the ease of receptive field
estimation, for example, via the spike-triggered average (Chi-
chilnisky 2001; Reid et al. 1997) or, more recently, with a
generalized linear model (GLM; Paninski 2004; Truccolo et al.
2005), in addition to its easy interpretation, has led to the near
ubiquitous use of linear receptive fields in characterizing reti-
nogeniculate neuron function.

However, it is clear that nonlinear models are necessary to
explain many aspects of the RGC and LGN neuron responses
to visual stimuli (Butts et al. 2011; Sincich et al. 2009), in
particular, the high temporal precision of RGC and LGN
responses (Berry and Meister 1998; Butts et al. 2007; Keat et
al. 2001; Liu et al. 2001; Uzzell and Chichilnisky 2004). The
presence of clear nonlinear processing provides an opportunity
to gain further insight into the roles of different components of
the underlying circuitry in shaping the response. Indeed, the
interplay of excitatory and delayed inhibitory inputs is a
common mechanistic explanation for temporal precision (Gab-
ernet et al. 2005; Levy et al. 2013; Wehr and Zador 2003) and
had previously been proposed to explain precision in the LGN
(Butts et al. 2011). In this regard, a major limitation of linear
models is that they implicitly average the different inputs
shaping a given neuron’s response, combining what might be
anatomically distinct inputs into a single term (the receptive
field). However, in situations where distinct inputs do not
contribute linearly to the response, a nonlinear modeling ap-
proach can detect these separate contributions and quantify
their relative influence on the observed spike trains.

The existence of nonlinear processing in retina and LGN is
consistent with known physiology. Nonlinear rectification of
excitation has been observed at bipolar-to-ganglion cell syn-
apses within the retina (Demb et al. 2001) and also implicitly
occurs due to the spiking of RGCs. Likewise, inhibition is
present via interneurons in both the retina (Baccus 2007;
Grimes 2012; Masland 2012) and LGN (Blitz and Regehr
2005; Dubin and Cleland 1977; Hirsch et al. 2015; Wang et al.
2007), from the perigeniculate nucleus (Vaingankar et al. 2012;
Wang et al. 2011b), and through feedback from visual cortex to
LGN (Guillery and Sherman 2002; Sillito et al. 2006). Other
physiological mechanisms, such as spike refractoriness (Berry
and Meister 1998; Gaudry and Reinagel 2007; Paninski 2004)
and synaptic depression (Ozuysal and Baccus 2012), have been
proposed to contribute to nonlinear processing within the
retinogeniculate circuit.
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However, it has been a challenge to use nonlinear modeling
approaches to understand how these different circuit mecha-
nisms contribute to precision. On the one hand, the most
common nonlinear approaches, such as spike-triggered cova-
riance (Fairhall et al. 2006; Liu and Gollisch 2015; Samengo
and Gollisch 2013) and maximally informative dimensions
(Sharpee et al. 2004; Sincich et al. 2009), result in mathemat-
ical terms that have no ready interpretation regarding the
underlying physiology. On the other hand, approaches that
explicitly consider cellular and circuit mechanisms are usually
limited to consider only one mechanism at a time, since models
that incorporate multiple mechanisms involve a proliferation of
parameters that are hard to constrain with data and that even
when adequately constrained are difficult to optimize. As a
result, previous explanations of the generation of temporal
precision have relied on single mechanisms evaluated at only a
single stage of processing.

In the present work, we use a nonlinear modeling approach
designed to isolate different nonlinear contributions to neuron
responses, the nonlinear input model (NIM; McFarland et al.
2013), combined with paired recordings of LGN relay cells and
their primary retinal input, to gain insight into the circuit
components that shape LGN responses. This model was orig-
inally used to demonstrate that precision in the LGN could be
generated through the interplay of excitation and a delayed
suppression (Butts et al. 2011). However, it was not clear what
the source of such delayed suppression is, or whether there are
other contributions to LGN responses. To untangle the contri-
butions from each stage of processing, we used extracellular
recordings in the LGN that simultaneously capture the domi-
nant retinal input, in the form of S-potentials (Bishop 1953;
Kaplan and Shapley 1984), in addition to the output LGN relay
cell spikes.

We first demonstrate that the dominant computations re-
sponsible for precise firing in the LGN are also present in the
S-potential inputs, suggesting that temporal processing in the
LGN is largely inherited from the dominant RGC input. We
then show how the interplay of excitation and suppression in
the retina can explain the dependence of response timescales
on the spatial scale of the visual stimulus. Finally, using a
model of LGN response that uses the S-potential input com-
bined with stimulus processing terms, we show that the NIM
can detect other inputs that shape the LGN response, some of
which have nonlinear characteristics, such as PULL inhibition
(Wang et al. 2007), as well as a diversity of other inputs.

Together, this work demonstrates how the LGN response to
visual stimuli is shaped through multiple stages of visual
processing, which sets the foundation for cortical processing of
vision. More generally, the combination of detailed recordings
and appropriately targeted nonlinear modeling presented dem-
onstrates how a physiologically motivated nonlinear model can
be used to tie visual neuron function to its underlying circuit
elements.

METHODS

Neural recordings. Extracellular recordings of relay cells in the
LGN were collected with high-impedance (5–10 M�) tungsten-in-
glass electrodes placed in dorsal layers A and A1 of the LGN. A total
of 19 paired recordings of retinal and relay cell activity (described
below) from 11 anesthetized and paralyzed adult cats were used for
this study. Details of the surgical preparation are the same as de-

scribed in previous studies (Casti et al. 2008). All surgical and
experimental procedures were performed in accordance with the
Institutional Animal Care and Use Committee at the Mount Sinai
School of Medicine (New York, NY). Voltage traces were sampled at
40 kHz with a CED Power 1401 data acquisition device (Cambridge
Electronic Design, Cambridge, UK).

When an electrode tip is moved sufficiently close to the cell body
of a thalamic neuron, it is possible to record simultaneously the output
spikes of an LGN cell and its primary excitatory postsynaptic poten-
tial (EPSP) inputs from the retina. These retinal EPSPs are called
S-potentials because of their relatively slow temporal waveform
compared with spikes (Kaplan and Shapley 1984) and in extracellular
recordings manifest themselves as small-amplitude events (�10–20%
of peak spike amplitude) that either fail to evoke a relay cell spike
within �1 ms or succeed in triggering a spike. Spike-evoking retinal
S-potentials typically precede the LGN spike within a window of �1
ms and are often fused within the spike to varying degrees (Sincich et
al. 2007; Weyand 2007). LGN spikes without an obvious S-potential
antecedent were rare in our data (�5% of spikes in the most extreme
cases). In our definition of the RGC input spike times for those events,
we assumed that an S-potential was present but invisibly buried within
the spike, with the event time defined as the onset of the relay cell
spike.

In this study, we focused on X cells, of which �60–80% are
reported to have their dominant retinal input provided by a single
ganglion cell in the cat (Cleland and Lee 1985; Mastronarde 1987). In
this respect, cat LGN is similar to monkey LGN, for which the
connectivity between retinal and thalamic cells is predominantly one
to one, whereas Y cells in cat invariably receive multiple ganglion cell
inputs (Weyand 2016; Yeh et al. 2009). We thus focused on X cells
in this study to minimize the confounding influence of multiple
undetected RGC inputs to recorded LGN neurons.

In each of these paired RGC-LGN X cell recordings, the detected
S-potential events did not overlap in time and had inter-event intervals
exceeding �2 ms, suggesting that the primary extracellularly detect-
able retinal inputs to these thalamic neurons derived from a single
RGC. We note that although it is possible that the timing of retinal
spikes could be jittered at the retinogeniculate synapse, previous
studies of simultaneously recorded ganglion cell spikes and their
associated S-potentials have shown that the variability between the
time of a ganglion cell action potential and the emergence of the
S-potential is only about one-tenth of a millisecond (Levick et al.
1972). It is therefore reasonable to expect that the S-potentials
accurately reflect the precision of retinal spiking. S-potentials and
relay cell spikes were all carefully sorted offline with principal
components analysis (Spike2 software; Cambridge Electronic
Design).

Visual stimuli. Visual stimuli were presented monocularly on a
cathode ray tube (CRT) monitor with a screen refresh rate of 160 Hz.
Once an LGN neuron with discriminable S-potential inputs was
encountered, a contrast-reversing or drifting sine wave grating was
presented to determine whether it was an X or Y cell (Hochstein and
Shapley 1976), and only X cells were used for this study (see above).
We first estimated the receptive field center size using spatially
homogeneous circular spots modulated at a temporal frequency that
drove the strongest F1 response component, and we estimated the
center size as the spot size that maximized the firing rate. We used this
spot size to determine the ranges of spot size to be presented during
the rest of the experiment, as described below. In most cells, we also
presented a 16 � 16 checkerboard stimulus in which each pixel is
modulated in time by spatially and temporally uncorrelated binary
m-sequences (Reid et al. 1997). In these cases, a circularly symmetric
difference-of-Gaussians model (Enroth-Cugell and Robson 1966) was
fit to the recorded data with the use of a spatiotemporal GLM as
described by Butts et al. (2011), with the spatial extent of the center
fit taken as the center size. In cells where we could use both methods,
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the resulting measurements were in close agreement. In the figures,
we report spot sizes normalized by this measured center size.

The visual stimuli for the modeled data consisted of spatially
homogeneous circular spots centered on the receptive field (RF) of
each cell, which were modulated in time either by a binary m-se-
quence (Sutter 1987) or temporally independent samples of natural-
istic luminance sequences (van Hateren 1997). The spot size was
varied over a range spanning about one-half the receptive field center
size to two to five times the center size. For a few cells there were only
two spot sizes recorded, a “small” spot (RF center size) and a “large”
spot (full field effectively), but this still allowed a comparison of the
effects of small and large stimuli.

For any fixed spot size, a full stimulus run consisted of 128
“frozen-noise” repeat trials interleaved with either 128 or 32 “unique”
trials that were distinct temporal sequences sampled from the stimulus
intensity distribution. The repeat stimulus was identical across spot
sizes so that the firing rate response to the same temporal sequence
could be compared at various spot sizes (see Fig. 1A). Each trial had
a duration of either 6.39 s (m-sequence modulation) or 8 s (van
Hateren stimulus), corresponding to a recording time of �27 min
(m-sequence) or �34 min (van Hateren) for each fixed spot size. The
stability of the recording was assessed from the repeat trials: we
restricted our analysis to data for which the repeat trial responses had
stationary statistics (i.e., there was no eye drift or sudden changes
in the cat’s physiology). Before the spot size was changed, the RF
center was quickly mapped again with the spatiotemporal check-
erboard stimulus to ensure that the eye position had not shifted. In
the rare instances when the eye did shift, we remapped the RF and
recentered subsequent stimuli.

Measurements of precision. As described in previous work (Butts
et al. 2007, 2010; Desbordes et al. 2008), we associate response
“precision” with characteristic temporal widths of firing rate “events”
in the peristimulus time histogram (PSTH; Butts et al. 2010). Specif-
ically, the response timescale is derived from the autocorrelation of
the PSTH by fitting a Gaussian to the central peak of the response
autocorrelation function (ignoring a 3-ms window around zero time
lag). The response timescale is then given by �2 times the standard
deviation of the Gaussian fit (Butts et al. 2007).

Because the data in this study were generally less sparse (with
fewer gaps in the PSTH and smaller magnitude of firing rate fluctu-
ations) than the LGN data for which these methods were originally
derived, we modified the measurement of response timescale to
calculate a clean central peak of the autocorrelation. To do this for a
given spot size, we began with the LGN spike train responses to the
repeated stimulus and used the PSTH to associate each spike with a
response “event,” where each event corresponded to a period of high
firing rate (greater than one-fourth of the peak firing rate) surrounded
by zero firing for �8 ms (Butts et al. 2010). The resulting events were
further broken up if there were two distinct peaks in its smoothed
PSTH, with the firing rate in between the peaks less than half the
height of the lower peak. In these cases, we used a Gaussian mixture
model to split up the spikes between the two smaller events. Once the
LGN events were labeled, we used their timing to guide a similar
parsing of the S-potentials into corresponding events, which often had
more ambiguous boundaries due to their less sparse firing. Using these
event structures, we calculated the autocorrelation of the response on
each event separately and computed the total autocorrelation assem-
bled as a weighted average over each event. This allowed for unam-
biguous identification of the central peak of the autocorrelation as well
as its width, because the autocorrelation function was not confounded
by the additional correlations between spikes in different events. This
method robustly identified the response timescales of RGC and LGN,
and was consistent with the application of earlier methods (Butts et al.
2007, 2010; Desbordes et al. 2008) applied to the data in this study.

The nonlinear input model framework. The nonlinear input model
(NIM) was previously described in detail (McFarland et al. 2013),
with an early version initially applied to LGN data (Butts et al. 2011).

Briefly, the model is of the form of an LNLN cascade (see Fig. 2A; Eq.
5), with model parameters representing excitatory and suppressive
filters {k1, k2}, corresponding upstream nonlinearities f1(·) and f2(·), a
spike history term h, and parameters of the spiking nonlinearity F[·].
The NIM in principle can incorporate many separate excitatory and
suppressive components, but we found that models with more than
two components (one excitatory and one suppressive) did not have
significantly better performance. Likewise, although the upstream
nonlinearities can be directly estimated in the NIM framework, we
found that their forms could be accurately captured by constraining
f1(·) to be linear and f2(·) to be threshold-linear with a threshold �2.
These parametric nonlinearities often led to better model performance
because they had fewer parameters and made the optimization less
prone to settling into suboptimal local maxima of the likelihood
function. The spike history term h was constrained to be negative such
that it only captured suppressive effects of previous spikes (positive
values for h effectively allow previous spikes to predict futures ones,
independent of stimulus input). This negative constraint had negligi-
ble (if any) effects on model predictions.

For the spiking nonlinearity, we fit a logistic function

F[g] �
1

1 � exp[��(g � �)]
, (1)

where � is a measure of the effective spiking threshold and � controls
the response gain near threshold.

Parameter optimization was performed using maximum a posteriori
(MAP) likelihood maximization (McFarland et al. 2013). In this case,
we maximized the Bernoulli log-likelihood (Haslinger et al. 2012)
instead of the more common Poisson likelihood (Paninski 2004;
Truccolo et al. 2005), because the time bins used for analysis (�t 	
0.5 ms) can contain only zero or one spike. For a set of observed spike
times {ts}, the Bernoulli log-likelihood with regularization penalty is
given by

LL � �
t�ts

log r(t) � �
t	ts

log[1 � r(t)] � P��ki� ;�
i�� , (2)

where P[.] is a positive penalty determined by the filters of the model
and choice of regularization meta-parameters {
i} (see below).

We then maximized the different parameters of the model using
gradient ascent from chosen initializations of the parameters. Analytic
computation of the LL and its gradient with respect to the model
parameters (i.e., �LL/�ki) allowed for efficient gradient ascent. Al-
though the dependence of the LL on model parameters was not convex
(unlike models with only linear terms such as the GLM; e.g., Paninski
2004), in practice the NIM parameters robustly converged to the same
solution given particular strategies for initializing the model.

For the NIM applied to RGC and LGN data (e.g., Figs. 2 and 3), we
initially fit the linear-nonlinear (LN) model and linear-refractory (LR)
models, which are special cases of the general mathematical form of
the NIM (Eq. 5) that are guaranteed to converge to the optimal model
regardless of initialization (Paninski 2004; Truccolo et al. 2005). We
then added a delayed suppression term, using the previously computed
linear filter of the LR model as an initialization of the excitatory filter,
and a delayed version of this filter to initialize the suppressive filter.
These initializations lead to robust estimation of the NIM for RGC
and LGN models (Butts et al. 2011). The code we used to implement
the NIM is available for download (see ENDNOTE at the end of this
article).

Extensions of the NIM to S-potential recordings. We extended the
NIM to incorporate information from S-potential recordings, resulting
in the “postsynaptic current” nonlinear input model (PSC-NIM). This
was done by adding a linear temporal filter p, the PSC term, which
operates directly on the binned S-potential data. The model-predicted
firing rate (Eq. 5) thus becomes

r(t) � F�p · Rs(t) � �
i

fi[ki · s(t)] � h · RLGN(t)� , (3)
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where RS(t) is the binned history of S-potentials at time t, and RLGN(t)
is the binned LGN spike history. The PSC term was implemented in
the same way as the spike history term h, except that p was not
constrained to be negative, as h was. This additional linear filter p was
simultaneously optimized with the rest of the model parameters.

Regularization and cross-validation. We added a penalty term to
the log-likelihood (Eq. 2) to enforce smoothness in the filters and
avoid overfitting. As with earlier work (McFarland et al. 2013), we
penalized the squared magnitude of the discrete Laplacian � acting on
each filter, i.e.,

P��ki� ;�
i�� � �
i


i��ki�2. (4)

We used nested cross-validation to determine {
i}: 85% of the unique
stimulus sequence data was used to fit the model parameters for a
given choice of each 
i, and the remaining 15% was used to measure
a cross-validated log-likelihood. We then systematically varied each

i to maximize this cross-validated log-likelihood. Once the appro-
priate regularization meta-parameters were determined, we used the
responses to repeated stimuli, which were not used for in the param-
eter optimization, for assessing the model performance.

Unified model across spot size. We pooled data from the same
neuron across spot size to fit unified models, where only the temporal
filters were allowed to vary. Specifically, we started with independent
fits for each spot size, and then used each temporal filter ki from the
n-th spot size to process the stimulus into a single filtered stimulus
gni(t) 	 ki·s(t). We then concatenated each filtered stimulus sequen-
tially across spot size [gn1(t), gn2(t), gn3(t), ...], in register with the
corresponding response, and used these data to fit the spike history
term h, the upstream nonlinearity thresholds �j, and, for the PSC-
based models, the PSC filter p. We then fit models for each spot size
with these shared parameter values fixed, optimizing the filters for
each spot size separately. Next, we alternated between fitting the
shared parameters and separate filters until the likelihood no longer
improved (generally 2–3 iterations). Because we often found slow
shifts in the threshold of the spiking nonlinearity (as can happen with
anesthetized data; Butts et al. 2011; Goris et al. 2014), the offset in the
overall generating function was allowed to vary across spot size.

Model performance. We gauged model performance using both the
cross-validated log-likelihood LLx and the predictive power (Sahani
and Linden 2003), which is defined as the fraction of explainable
variance that the model captures. The predictive power is similar to
the standard R2 measure (i.e., fraction of explained variance) but
uses the variability in response to repeated stimuli to estimate how
much of the variance is unexplainable and adjusts for this. Both
measures are highly correlated, and thus we usually just report
predictive power for measuring model performance in all but the
PSC-NIM. Because the firing rate of the PSC-NIM depends on the
S-potential input, performance measures relying on repeated presen-
tations are not reliable, and we report the LLx to measure performance
for this model.

For the NIMs of RGCs, we reported the predictive power of models
fit to single spot sizes (see Fig. 3), as well as comparisons between
these single-spot-size models and unified models for single neurons fit
across spot sizes (see Fig. 4C). For the PSC-NIMs of LGN, we made
the assumption that the PSC term should not change with spot size,
and thus restricted all models of a given neuron to share the PSC,
spike history, and upstream nonlinear terms for the purpose of
measuring cross-validated model performance (see Fig. 7).

Temporal resolution of all analyses. We binned all data (LGN
spike times, S-potential times, stimulus values) at the resolution of
one-twelfth the stimulus refresh (�0.5 ms). To model the stimulus
input at this resolution, we assumed the stimulus was a delta function
with its value at the recorded stimulus-onset trigger time, and then
zero for the other 11 time bins, which approximated the temporal
luminance profile of the CRT. Alternatives, such as assuming the

stimulus was constant across the 12 bins, led to artifacts in the filter
estimation.

We fit the temporal filters at one-half the frame resolution (i.e., 6
time bins) using tent basis functions (Ahrens et al. 2008; McFarland
et al. 2013) with 60 time lags for each filter, corresponding to a total
filter duration of �180 ms. We used 20 parameters for the spike
history term, which represented the spike history amplitude at loga-
rithmic spacing that initially started at 0.5 ms and doubled every 5
values, encompassing a total duration of �40 ms. For the extended
PSC-NIM that used S-potential recordings, the PSC term was fit at
0.5-ms resolution and had 40 equally spaced time lags, encompassing
an �20-ms duration.

RESULTS

Precision and nonlinearity in the LGN increase with sur-
round stimulation. We recorded LGN spike trains driven by a
temporally modulated spot centered on each neuron’s receptive
field (RF). We presented each neuron with a range of spot
sizes. As spot size increased, LGN neuron responses became
more finely structured in time (Fig. 1A), with larger, faster
fluctuations in the firing rate that reflected more precise spike
timing across trials. As a result, the timescale of the response,
based on the autocorrelation time of the PSTH (Butts et al.
2007, 2010; Desbordes et al. 2008), gradually decreased with
increasing spot size (Fig. 1B). For the example neuron, the
response timescale at the smallest spot size (7.8 ms) was nearly
four times larger than at the largest spot size (2.0 ms). This
trend was observed in 18/19 LGN neurons recorded, with a
median 2.4-fold decrease in response timescale from smallest
to largest spot size.

To understand how the temporal precision of LGN responses
is generated, we made use of the simultaneously recorded
retinal S-potentials. Because the S-potentials represent the
dominant RGC input to each LGN X cell that we recorded
from (Cleland and Lee 1985; Mastronarde 1987; Weyand
2016), this allowed us to make direct comparisons between
LGN and RGC spike trains to determine how precision is
shaped at each stage of the circuit. Comparisons between the
two PSTHs suggest that the RGC response, although much less
sparse than the LGN response, develops finer temporal struc-
ture with increasing spot size in parallel to the LGN PSTHs
(Fig. 1A). We similarly measured the RGC response timescale
and found similar reductions to that of the LGN, both for the
example shown (Fig. 1B) and across all neurons in the study
(Fig. 1C). The close correspondence between the two across
spot sizes of all neurons (Fig. 1D) suggests that the temporal
patterning of LGN responses have their source in the retina.

Comparisons between nonlinear models of LGN and RGCs.
The circuit components that shape LGN response features such
as precision (Fig. 1A) are potentially distributed across the
retinogeniculate pathway, so we took a modeling approach that
is capable of inferring these mechanistic properties and loca-
tions within the circuit. To establish a baseline of model
performance, we first modeled the LGN responses using a
linear-nonlinear (LN) cascade model (Chichilnisky 2001; Si-
moncelli et al. 2004), which predicts a response on the basis of
how closely the stimulus s(t) at a given time t matches a linear
receptive field k (Fig. 2A). The first stage of processing in the
LN model is a linear comparison between the stimulus and
temporal filter k, denoted by the dot product k·s(t), where we
use bold type to denote a vector (i.e., s(t) 	 [s1(t), s2(t), s3(t),
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...]). Note that with this notation, the different components of
the time-binned stimulus si(t) correspond to different time lags,
and the receptive field is a temporal filter (Fig. 2B). The output
of this linear comparison is followed by a spiking nonlinearity
F[·], which maps the projection of the stimulus onto the
receptive field into a firing rate: r(t) 	 F[k·s(t)].

We then augmented the LN model to include spike history
effects, such as a refractory period (Paninski 2004; Pillow et al.
2005; Truccolo et al. 2005), which has previously been sug-
gested to explain the millisecond timescale precision in the
responses of RGC and LGN neurons (Berry and Meister 1998;
Keat et al. 2001; Pillow et al. 2005). The spike history term can
be similarly modeled as the projection of a vector of “spike
history” weights h (Fig. 2C) onto the observed spike history,
Robs(t), where Robs(t) is a vector of the most recent spike
counts before time t (not including the current time bin labeled
by t). The filtered spike history h·Robs(t) is added to the output
of the receptive field so that the firing rate is given by r(t) 	
F[k·s(t) 
 h·Robs(t)] (Paninski et al. 2007; Truccolo et al.
2005). We refer to this as the “linear-refractory” (LR) model,
highlighting that it still processes the stimulus linearly but also
is influenced by spike refractoriness. Neither the LN nor LR
model accurately predicts LGN responses at high time resolu-
tion (�1 ms) (Butts et al. 2007, 2011), as gauged by the
predictive power (Fig. 2D), which quantifies the differences
between the model-predicted PSTH and the observed PSTH

(Fig. 2E). Notably, the LN and LR models often did not
perform as badly at small spot sizes (Fig. 2D), where the LGN
response had slower temporal scales.

We then added a nonlinear suppressive component to the LR
model, which has previously been shown to predict the fine
timescales of the LGN response (Butts et al. 2011). The
resulting nonlinear input model (NIM; McFarland et al. 2013)
has the form of an LNLN cascade (Korenberg and Hunter
1986) where each “input” to the model is itself an LN model
with its own receptive field ki and upstream nonlinearity fi(·).
These nonlinear inputs are summed together with the output of
the spike history term before being passed through a spiking
nonlinearity (Fig. 2F):

r(t) � F��
i

f i[ki · s(t)] � h · Robs(t)�. (5)

This model implicitly encompasses the LN and LR models,
since the best fit fi(·) functions can in principle be linear
(reducing to the LR model), and likewise the spike history term
can vanish, reducing to the LN model. As with the LN and LR
models, which are both in the category of GLMs (Paninski
2004; Truccolo et al. 2005), the NIM can be fit using maxi-
mum-likelihood estimation (McFarland et al. 2013; see METH-
ODS), resulting in nonlinear models that predict the observed
LGN spike trains with much higher fidelity (Butts et al. 2011;
McFarland et al. 2013), as we shall show.
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of their inability to capture the increasingly high timescales, whereas the NIM fares better. The arrow indicates the spot size that the models are shown in B,
C, E, and G–I. E: the model predictions (colors) compared with the measured PSTH (black) for the repeated trials (not used for model fitting). The NIM (green)
is able to largely reproduce the precision of the true response, whereas the other models are less precise. F: model schematic for the NIM, which has 2 nonlinear
inputs comprising a linear temporal filter ki and upstream nonlinearities fi(·). The output of these filters is summed with a spike history term h and passed through
a spiking nonlinearity F[·]. G: the temporal filters of the NIM compared with those of the LN model (from B) for the LGN example neuron (top) and its RGC
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For LGN neuron responses, we found that most parsimoni-
ous model had two inputs (Butts et al. 2011): a linear excitatory
term and a nonlinear suppressive term (Fig. 2, G and H).
The suppressive temporal filter was always delayed relative
to the excitatory filter, and the suppressive output (but not
that of the excitation) was rectified using a parametric thresh-
old-linear functional form (see Fig. 2H). The resulting NIM
outperformed the LN and LR model across spot sizes (Figs. 2D
and 3), with a particularly substantial differential improvement
at large spot sizes, where the LGN response was more precise.

Given the similarity of response timescales between retina
and LGN (Fig. 1), we expected an optimized NIM to produce
a similar model when applied to the RGC output (measured by
the S-potentials; see METHODS). Indeed, fitting the RGC data
with the NIM yielded nearly identical models, with the same
paired excitatory and suppressive filters (Fig. 2F, bottom). In
contrast, the LN and LR models were often much less similar
between the retina and LGN (Fig. 2B; also see Rathbun et al.
2010; Wang et al. 2010), likely indicating a difference in
processing between the two areas that could not be captured
without nonlinear stimulus processing. The main difference in
the NIMs between the two areas was a change in the spiking
nonlinearity F[·] (Fig. 2I), which had a higher threshold in the
LGN. This reflects that spikes in the LGN are more selective to
the stimulus (Rathbun et al. 2010) and will likewise contain
more information per spike (Sincich et al. 2009; Uglesich et al.
2009; Wang et al. 2010).

The trends illustrated in the example cell from Fig. 2 were
consistent across the 19 RGC-LGN paired recordings used in
this study. In particular, the NIM performed well across spot
sizes for both RGC and LGN (Fig. 3, A and B) but showed
larger improvements over the LR model at larger spot sizes
(Fig. 3, C and D). Notably, the NIM performance fell less at
large spot sizes in the retina than in LGN, suggesting its
nonlinear structure was more effective at capturing the RGC
responses.

Filter changes underlie response timescales in the retina.
Because of the similarity of the nonlinear models for the LGN
and retina, we hypothesized that the changes in LGN response

timescales are inherited from the retina and thus might be
explained by studying the models of RGCs across spot size. To
determine what aspects of RGC computation changed across
spot size, we fit a single model to all the data for a given
neuron, allowing only certain model parameters to change with
spot size (see METHODS). In doing so, we found that nearly all
changes across spot size could be captured by a change in the
excitatory and suppressive filters alone (Fig. 4, A and B). The
performance of this “unified” model for each spot size was not
significantly worse than a model fit separately to each spot size
on a neuron-by-neuron basis (t-test, P � 0.05), and there were
only 5/70 spot sizes (distributed across the 12 neurons recorded
with �3 spot sizes) where the individually fit model had a
�2% improvement in predictive power over the unified model
(Fig. 4C).

The filter changes followed the same trend for all neurons:
filters became narrower at larger spot sizes and had a peak
amplitude around the size of the RF center (e.g., Fig. 4B). Such
filter changes are consistent with the well-known center-sur-
round organization of RGC receptive fields (Cai et al. 1997;
Kuffler 1953). For spot sizes smaller than the RF center size
(e.g., Fig. 4B, left), increases in spot size produced increases in
the amplitude of both excitatory and suppressive filters, con-
sistent with more stimulation of the RF center. As the spot size
increased past the measured RF center size, filter amplitudes
became smaller (Fig. 4B, right), presumably because stimula-
tion of their opposite-sign surround increasingly canceled the
center response. Throughout, the temporal scale of the filters
became sharper, likely due to the partial cancellation of the
later part of the center response by the delayed surround (Cai
et al. 1997). Note that whereas this trend was previously
reported for linear receptive fields (Butts et al. 2007, 2011; Cai
et al. 1997), this is the first report that it applies to both the
excitatory and suppressive RF components, suggesting that the
suppressive term has similar center-surround organization to
the excitation.

As a result, the models for the smallest and largest spot sizes
had dramatically different temporal filtering associated with
them (Fig. 4A, top). This suggests the possibility that changes
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in the filter timescales underlie the changes in response timescales.
To further investigate this, we characterized the timescales of
these filters in a way analogous to that of the response timescale
(see METHODS). In agreement with this intuition, the timescale of
linear filtering decreased with increasing spot size (Fig. 4D,
left), both for the LN model (red) and for the excitatory
(purple) and suppressive (cyan) filters of the NIM. The simi-
larity in these trends can be demonstrated by normalizing each
curve by its mean timescale (Fig. 4E). Similarly, plotting the
timescales of the linear filter with that of the response timescale
across spot sizes and neurons (Fig. 4F) revealed a roughly
consistent ratio between these timescales.

It is also clear, however, that the timescale of filtering is still
significantly larger than the response timescale. Across neu-
rons, the filter timescales were on average 2.5 times larger than
the response timescales (Fig. 4G). As previously described
(Butts et al. 2011), the response timescales emerge in the NIM
due to the interplay of excitation and suppression, because the
delayed suppression will subtract from the latter parts of

excitatory events (Fig. 4H), resulting in more transient re-
sponses than can be predicted by linear filtering.

Direct model of LGN processing. The presence of excitatory
and suppressive inputs in the RGC model suggests that the
analogous elements of the LGN neuron models (Fig. 2; Butts et
al. 2011) are at least partially inherited. To determine whether
this was the case, as well as to resolve other contributions to
LGN responses distinct from its dominant RGC input (Guillery
and Sherman 2002; Sillito and Jones 2002), we constructed a
model to explain the LGN response using paired S-potential–
relay cell recordings (Babadi et al. 2010; Carandini et al. 2007;
Casti et al. 2008) in combination with additional stimulus
processing terms (e.g., Babadi et al. 2010). In this modeling
framework, the stimulus-processing terms that are inherited
from the retina would presumably be represented in the S-po-
tential inputs, and thus this direct S-potential input will “ex-
plain away” the presence of analogous stimulus-processing
terms determined by the NIM. As a result, additional terms
detected by the model that incorporated the S-potentials will
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result in better model performance only to the degree that they
capture the effects of additional inputs to the LGN neuron.

In the PSC-NIM (Fig. 5A), the S-potential input is processed
through a linear temporal filter that we call the “postsynaptic
current” (PSC) term p (Fig. 5B), which weighs the effect of the
S-potential input history on the LGN neuron’s response,
p·RS(t). The output of the PSC term is combined with the
previously elaborated terms of the NIM, including a spike
history term acting on observed LGN spikes (Fig. 5C), and
potentially one or more independent LN “stimulus-processing”
components acting directly on the stimulus as in previous
NIMs. The summed input is then passed through a spiking
nonlinearity (Fig. 5D). The PSC-NIM is fit in the same way as
the NIM described above, with the PSC term simultaneously
optimized with the other model components.

The PSC-NIM was far superior in its prediction of LGN
spiking compared with the stimulus-based models of the LGN
(Fig. 2), as evidenced by the much larger magnitude of the
output of the spiking nonlinearity (Fig. 5D) and the cross-
validated performance measure described below. This was
primarily due to the fact that the summed contributions of the
model components [the generating signal G(t); Fig. 5E] were
dominated by the fast component of the PSC term, which had
a large, often biphasic, transient component lasting 1–2 ms
(Fig. 5B). The role of this sharp transient in the model was

simply to ensure that the timing of each LGN spike is associ-
ated with an S-potential (Sincich et al. 2007). In this sense, the
PSC model ensures the precise timing of LGN spikes automat-
ically, and the other parts of the model serve to influence the
probability that a given S-potential will evoke an LGN spike.

Without this additional modulation from both the slow
component of the PSC filter and other terms (Fig. 5A), each
S-potential would predict the same probability of transmission.
Instead, the model predicts higher probability of firing for
conditions where the S-potential triggered an LGN spike (S-
potential “successes”) compared with when it was not associ-
ated with an LGN spike (“failures”; Fig. 5F). LGN responses
are sparser because not all transmissions are successful, and
transmission failures are nonrandom (Casti et al. 2008; Rath-
bun et al. 2010; Sincich et al. 2007; Uglesich et al. 2009). The
slower components of the PSC term allow for interactions
between closely spaced S-potentials (e.g., Fig. 5E, middle).
Note that because we only consider linear interactions in this
study, the PSC term is likely capturing more than the effects of
the postsynaptic current itself and will implicitly be shaped by
nonlinear processes involved in the integration of RGC inputs
(Rathbun et al. 2010). We did test more explicit models of
nonlinear interactions between closely spaced S-potentials but
found we could not significantly improve model performance
with more complex models of PSC integration. As a result, we
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opted to keep the PSC term in this relatively simple linear form
and focus on nonlinearities associated with the stimulus-pro-
cessing terms in the model.

We next considered the nature of additional stimulus-pro-
cessing terms that contributed to the PSC-NIM. Such stimulus-
processing terms would resemble those of the LGN NIM [for
example, containing ON excitation and delayed ON inhibition
for an ON cell (e.g., Fig. 2G)], if the effects of these terms were
not “explained away” by the S-potential input. Indeed, al-
though this approach detected additional stimulus-processing
terms that contributed to model performance in every neuron,
such terms never resembled the original stimulus-processing
filters of the NIM (without the PSC term). The most commonly
identified additional processing term was “PULL” suppression
(Wang et al. 2007), which for an ON LGN neuron, for
example, corresponds to a suppressive term with an OFF filter
(Fig. 5G). PULL suppression was detected in every neuron in
the study (see below), and in 11/19 recorded pairs it was the
only stimulus-processing term detected by the PSC-NIM. To-
gether with ON excitation from the S-potential, such an ar-
rangement is known as PUSH-PULL processing (Fig. 5H) and
is prevalent in both LGN and simple cells in primary visual
cortex (Hirsch et al. 2015; Martinez et al. 2014; Wang et al.
2007).

Was there any evidence that the stimulus-processing terms
resembling the original NIM without the PSC term (e.g., Fig.
2) were still present? We observed that PUSH excitation (e.g.,

ON excitation associated with an ON neuron) only led to
model improvements over a PSC-NIM that already had PULL
suppression in 3/19 neurons, leading in these cases to an
average model performance improvement of only 1.20%. Like-
wise, PUSH suppression led to a significant model perfor-
mance improvement in 11/19 neurons over the PSC-NIM that
already had PULL suppression, with an average model perfor-
mance improvement of 1.19%. Together, this suggests that the
excitation-with-delayed-suppression interaction underlying
temporal precision in LGN X cells (Butts et al. 2011) is almost
entirely due to computations already present in the S-potential
input, although there is often a small contribution from PUSH
inputs (largely suppressive) added at the level of the LGN.

The presence of additional stimulus-processing terms in the
PSC-NIM does suggest that LGN X cells are integrating input
from more than one RGC, through either direct excitatory
inputs or suppressive inputs likely operating through LGN
interneurons (Hirsch et al. 2015; Maffei and Fiorentini 1972;
Martinez et al. 2014; Wang et al. 2011a). We would thus
expect the selectivity of the additional stimulus processing
terms to evolve with spot size similar to the RGC example
(e.g., Fig. 4). Indeed, for an example neuron with a single
PULL suppressive term (Fig. 6, A–D, top), the temporal filter
became faster with increasing spot size, and the amplitude had
a peak at intermediate spot sizes.

Such evolution of temporal processing also could be ob-
served in neurons with multiple stimulus-processing terms in
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the PSC-NIM but required the ability to separate the effects of
each term. For example, for a neuron where a clear second
PUSH suppressive term, of opposite stimulus selectivity to the
PULL suppression, was detected in addition to the PULL
suppression, each filter evolved with a similar pattern (Fig. 6,
A–D, bottom). By comparison, if one were to only fit a single
linear term to these neurons, the selectivity of its filter shifts
dramatically with spot size (Fig. 6E), because the two detected
inputs evolve differently with spot size (Fig. 6C), resulting in
a different balance of PUSH and PULL at a given spot size.
Note that the success of separate ON and OFF suppression
describing the range of models across spot size offers strong
evidence for the presence of both ON and OFF suppressive
inputs onto this neuron, which cannot be detected with the use
of standard whole cell approaches in the context of sparse noise
(e.g., Wang et al. 2007), due to the summation of PUSH
suppression with direct RGC input.

In all cases, the addition of stimulus-processing terms to a
model with just PSC and spike history terms (the PSC model)
improved performance (Fig. 7B). Such models also outper-
formed PSC models with just a single linear processing term
(Fig. 7C; Babadi et al. 2010). For these data, we could not
compare model output to an observed firing rate (as above for
the RGC models) because the different S-potentials on each
trial would predict different firing rates on each trial. As a

result, in this case we report the cross-validated log-likelihood
(see METHODS), which can be measured on a trial-by-trial basis,
and its values are correlated with more familiar measures of
model performance such as R2 and predictive power (Butts et
al. 2011; Cui et al. 2013).

For these models, the influence of these stimulus-processing
terms was subtle because the model performance was domi-
nated by the PSC term (Fig. 7A). Indeed, we found that these
additional stimulus-processing terms only slightly influenced
the timing of LGN spikes by making some S-potentials less
likely to be transmitted. Because the resulting model is better
able to predict transmission successes and failures (Fig. 5F), it
has a better performance. As expected from direct measure-
ments of timescales between the LGN and its S-potential input
(Fig. 2), this had almost no influence on the response timescale
from retina to LGN but served to make the LGN response
sparser. This is consistent with our earlier conclusion that the
elements responsible for the generation of temporal precision
reside in the retina. However, this sensitive circuit-inspired
analysis did reveal that the RGC spike train is further shaped at
the level of LGN by both S-potential integration (Carandini et
al. 2007; Casti et al. 2008) and additional inputs (Babadi et al.
2010; Blitz and Regehr 2005; Martinez et al. 2014; Wang et al.
2007).

DISCUSSION

Neural responses in the early stages of visual processing up
through primary visual cortex are surprisingly linear (Caran-
dini et al. 2005; Shapley 2009): this is surprising because the
anatomy and physiology of retina and LGN are rife with
nonlinear processing elements. Specifically, “linearity” in this
context refers to the fact that the response of neurons can be
well predicted by comparisons between the stimulus and a
linear receptive field, or “filter,” with the response roughly
proportional to the similarity between the two (Carandini et al.
2005; Chichilnisky 2001). In this sense, it is likely that the
visual circuitry is in part geared to construct linear responses
from its intrinsically nonlinear elements (Shapley 2009). How-
ever, the linearity of visual neuron responses in large part
confounds the ability to gain insight into how their responses
are shaped by the underlying circuit, since multiple linear
filters operating on the same stimulus are equivalent to a single
filter, obscuring potentially distinct circuit components.

We used a nonlinear modeling approach, the nonlinear input
model (NIM; McFarland et al. 2013), to bridge this gap
between circuit and function. We focused on aspects of the
response of LGN neurons known to require nonlinear process-
ing, most prominently the stimulus transformations underlying
temporal precision (Berry and Meister 1998; Butts et al. 2007;
Liu et al. 2001; Passaglia and Troy 2004; Uzzell and Chichilni-
sky 2004), by specifically analyzing responses at high (0.5 ms)
time resolution. At this resolution, models based on linear
processing such as the linear-nonlinear (LN) cascade model
(Chichilnisky 2001) and the more general class of generalized
linear models (Paninski 2004; Truccolo et al. 2005), such as the
linear-refractory (LR) model, do a relatively poor job at ex-
plaining the response (Butts et al. 2011), providing an oppor-
tunity to explain the details of visual responses through non-
linear computations that relate to specific circuit components.
Our approach is thus unique in how it combined targeted
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Fig. 7. PSC model performance. A: cross-validated log-likelihood (LLx) for all
LGN neurons and spot sizes, across all the models considered for the LGN
neuron. The LN and NI models do not use S-potential input (e.g., Fig. 2); the
PSC models are as follows: PSC alone is without any stimulus processing
terms, 
L is with a linear stimulus processing term, 
N1 is with PULL
suppression, and 
N2 is with PULL and PUSH suppression. Notably, the
PSC-based models all have much larger LLx because of their ability to predict
the precise timing of the LGN spikes due to the S-potential inputs. Relatively
speaking, the additional enhancements of the stimulus-processing terms to the
PSC models were small but statistically significant (see below). B: the
difference in LLx (“stim-processing improvement” in bits/spike; equivalent to
the logarithm of the likelihood ratio) between the PSC models with stimulus
terms and the baseline PSC model. All comparisons are statistically significant
(t-test), both when each neuron is considered separately and when all neurons
are considered together. C, left: LLx difference between PSC
N1 and PSC
L
across neurons (all significant for all neurons, t-test). Right, the difference
between PSC
N2 and PSC
N1. Comparisons were significant for all but 4
neurons (and otherwise P � 10�6).
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experiments with tailored nonlinear models to bridge circuit
and function. First, the NIM has a mathematical form inspired
by the basic nonlinearities intrinsic to all neural circuits:
rectification (McFarland et al. 2013). It thus implicitly divides
inputs into excitatory and suppressive terms, and can charac-
terize the tuning of each separately. Second, we used record-
ings at two successive stages of the visual pathway, with
extracellular recordings at the LGN revealing the timing of
spikes of its main retinal ganglion cell RGC driver in the form
of S-potentials (Bishop 1953; Bishop et al. 1958; Cleland et al.
1971; Freygang 1958; Kaplan and Shapley 1984). This allowed
us to distinguish whether nonlinear terms detected in the LGN
(Butts et al. 2011) have their source in the retina, versus being
generated in the LGN de novo. This detailed, circuit-specific
model of processing at both retina and LGN produced a
description of how multiple mechanisms contribute at each
stage of processing, and the contribution of each in the trans-
formation of signals from visual stimulus to RGC response to
LGN response.

This contrasts with previous approaches to describing the
computations from RGC to LGN in more abstract terms, such
as spike-triggered covariance (STC; Fairhall et al. 2006; Liu
and Gollisch 2015; Samengo and Gollisch 2013; Wang et al.
2010) and maximally informative dimensions (MID; Sincich et
al. 2009). Such approaches can identify multiple components
contributing to processing in retina and LGN. However, the
interpretation of the STC and MID components is much more
challenging (McFarland et al. 2013) and is geared to offer
insight into the transformation of the computation (Rathbun et
al. 2010; Wang et al. 2010) rather than into the underlying
circuit. Other approaches have employed more mechanistic
modeling (Carandini et al. 2007; Casti et al. 2008), although
neither could explain LGN responses to larger spot sizes (Casti
et al. 2008), or have restricted the study to receptive field
center-sized stimuli (Carandini et al. 2007), for which re-
sponses are less precise and could be explained without the
circuit mechanisms presented in this report.

What did we ultimately learn with the NIM about LGN
computation and the circuitry behind it? First, our results
suggest that the mechanisms underlying temporal precision
present in the LGN response (Butts et al. 2007, 2011; Keat et
al. 2001) are present in the retina and thus likely inherited.
Furthermore, we demonstrated that the observed spot-size
dependence of LGN response timescales is predicted from
changes in the temporal filtering of both excitation and sup-
pression, in combination with the interplay of excitation with a
nonlinear suppression (Butts et al. 2011). We elucidated how
these mechanisms worked together with postsynaptic summa-
tion of input spikes (Babadi et al. 2010; Carandini et al. 2007;
Casti et al. 2008) to achieve a much sparser LGN response,
which despite involving fewer spikes produces more informa-
tion per spike than the retina (Sincich et al. 2009; Uglesich et
al. 2009). We also saw that spike refractoriness has a role in
shaping the response at the level of both the retina (Berry and
Meister 1998; Pillow et al. 2005) and the LGN (Gaudry and
Reinagel 2007), although it had little influence on the overall
firing rate envelopes (Butts et al. 2011), mainly influencing the
patterning of spikes within these envelopes (Pillow et al. 2005).

Our results also suggest that additional suppressive influ-
ences are added at the level of the LGN, predominantly PULL
inhibition (Hirsch et al. 2015; Martinez et al. 2014; Wang et al.

2007), but in some cases PUSH inhibition as well. The purpose
of PULL suppression in LGN processing of vision is difficult
to discern in this present study, which used a randomly vary-
ing, spatially homogeneous spot that cannot engage the spatial
footprint of PULL suppression, as a natural visual stimulus
might. Possible roles for PULL inhibition include burst prim-
ing in natural contexts (Alitto et al. 2005; Denning and Reina-
gel 2005; Lesica and Stanley 2004; Wang et al. 2007), the
generation of linear response profiles despite half-wave recti-
fied inputs from spiking neurons (Shapley 2009; Werblin
2010), and the enhancement of edge detection (Martinez et al.
2014).

Across relay cells there is variability in the source of
inhibitory inputs (Hirsch et al. 2015), some of which may be
locked or nonlocked to the arrival times of the synapsing upon
interneurons on the feedforward pathway (Blitz and Regehr
2005), whereas others may originate in feedback from primary
visual cortex (Briggs and Usrey 2007; Sillito et al. 2006), the
reticular nucleus (Mayo 2009; McAlonan et al. 2006), or
elsewhere. It is natural, then, to ask if the NIM weighed in with
a verdict on the source of the suppression, at least in the
context of time-varying but spatially homogeneous stimuli
(which are not expected to engage corticothalamic feedback
mechanisms as effectively as patterned stimuli; Sillito and
Jones 2002). To address this, we can compare the latency of the
LGN receptive field term in the NIM (Fig. 2) with the latency
of the suppressive nonlinear filters in the PSC-NIM (Fig. 5G).
Because both achieve their peak amplitudes �35 ms after
stimulus onset, this suggests that suppressive nonlinearities
come from interneurons on the feedforward pathway. If the
source of the suppression was corticogeniculate feedback, by
way of the reticular nucleus, for example, then we would
expect the latency peak of the suppressive filters to be delayed
�5–10 ms given the known spike transit times along that
pathway (Briggs and Usrey 2007). Furthermore, the timescales
of the PUSH inhibition observed are consistent with the “triad”
circuitry in which some LGN cells, X cells in particular, are
embedded (Koch 1985; Sherman 2004), for which the primary
retinal driver synapses directly upon a nearby interneuron
along with its target relay cell. The timescale of the PULL
inhibition is consistent with the circuit suggested in Wang et al.
(2007), in which an opposite-polarity RGC adjacent to the
primary RGC driver synapses upon an interneuron connected
to the LGN cell, thus providing maximal inhibition for the
stimuli least preferred by the relay cell.

In summary, we have presented an integrated picture of
processing across the precortical visual pathway and described
how multiple circuit mechanisms work together to generate
precision in the retina and amplify it in the LGN. Although this
study was performed with a relatively simple time-varying but
spatially homogeneous stimulus, the resulting structure of the
computations we describe sets the foundation for understand-
ing the visual computation for more complex stimuli, for which
the nonlinear computations essential to LGN precision are
likely to be important to cortical processing (Alonso et al.
1996; Kara et al. 2000; Stanley et al. 2012).
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